YOU MUST FOLLOW THESE INSTRUCTIONS FOR CORRECT ASSEMBLY AND OPERATION.
If you ignore or skim through these instructions, you could take quite a long time to put it together and still not get it right. And you might never find out about some of the not-so-obvious features. The choice is yours!

When you've finished the assembly, set aside some scrap material and work your way through the Accuracy Tests and the Operation Section, studying the manual before making the cuts.

If lending or passing on the Compact to someone else, ensure that they also study this manual before use.

A. SET UP .. 2-6
 Parts Layout Diagram 2
 Step 1 - Unpacking 3
 Step 2 - Fitting the Rip Fence 3
 Step 3 - Temporary Saw Fitting 4
 Step 4 - Fitting the Legs 5
 Step 5 - Final Saw Fitting 5
 Step 6 - Fitting the Overhead Guard 5
 Step 7 - Checking saw alignment 5
 Step 8 - Fitting the Lenses 6
 Step 9 - Fitting the Trigger Strap 6
 Step 10 - Connecting the Power 6
 Step 11 - Fitting the Storage Hooks 6

B. FEATURES/FUNCTIONS 7-9
 1. The Rip Fence 7
 2. The Protractor 7
 3. Push-stick & Pressure Finger 8
 4. The Overhead Guard 9

C. SAFETY .. 9

D. ACCURACY TESTS .. 10
 Test 1 - Checking your square 10
 Test 2 - Crosscutting tests 10
 Test 3 - Ripping Test 10

E. OPERATION .. 11-17
 1. Basic Ripping .. 11
 2. Narrow Ripping 11
 3. Ripping Long Pieces 11
 4. Ripping Larger Sheets 11
 5. Double Ripping 12
 6. Planing an Edge 12
 7. Planing a Face 12
 8. Planing a Wide Sheet 12
 9. Edge Rebating 13
 10. Tongue & Grooving 13
 11. Edge Work on Thin Material 13
 12. Working on End Grain 14
 13. Taper Ripping 14
 14. Crosscutting 15
 15. Multiple Crosscutting 15
 16. Crosscutting with an end stop 15
 17. Halving Joints & Tenons 16
 18. Mitre Cutting 16
 19. Mitre Cutting Moulding 16
 21. Mitre Cutting to a Length Stop 17
 22. Bevel Ripping 17

F. TROUBLESHOOTING ... 18-19

Text shown in a grey panel is generally of a "hints and tips" nature.
PARTS LAYOUT DIAGRAM

Leg locking holes for carrying and storing

Holes for "wheelbarrow mode" with optional Wheel Kit

Fence arms

Switch box

Saw slot insert

Lock for overhead guard support

Fence clamp handle

Fence scale pointer

Fence scale pointer

CONTENTS OF FASTENER BAG

<table>
<thead>
<tr>
<th>Diag. Ref.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Compact Main Body</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>Rear Leg</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>Front Leg</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>Rip Fence</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Captive Push-stick</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>Protractor (with Side Pressure Finger)</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>Overhead Guard Support</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>Overhead Guard</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>M6 x 40mm Coach Bolt</td>
<td>4</td>
</tr>
<tr>
<td>J</td>
<td>Washer</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>M6 Flange Nut</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>M6 x 12mm Coach Bolt</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>Clamp Knob</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>Clamp Base</td>
<td>4</td>
</tr>
<tr>
<td>O</td>
<td>Saw Back Stop</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>Trigger Strap</td>
<td>1</td>
</tr>
<tr>
<td>Q</td>
<td>Rip Fence Lens</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>Storage Hook</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>Temporary Saw Clamp</td>
<td>4</td>
</tr>
</tbody>
</table>
A. SET UP

STEP 1 - Unpacking
Set up the unit in a well-lit, uncluttered environment, preferably on a bench or table.

Use the diagram opposite to identify all part names and numbers.

If you have purchased the optional Wheel Kit (part no. AWA100) fit it now. Fitting instructions are included with the product.

Remove the legs from their storage positions by rotating the lock knobs inside the rear panel, as shown, and moving the legs sideways to disengage them from the locking tabs.

The front legs are stored inside the rear ones. Slide the front legs out and note the location of the locking holes in each leg, for future storage purposes. Put the legs to one side for now, and turn the unit right-way up.

STEP 2 - Fitting the Rip Fence
Fully raise the fence clamp handles on the end panels. Unfold the arms of the Rip Fence (D) and slide it along the fence tracks from the right hand side of the unit (when viewed from the front panel, which has the switchbox). Note that the taller part of the fence is facing the plastic insert in the tabletop, as shown below.

Study the fence scale pointers. The rip fence on the Compact can be fitted on the right-hand side or left-hand side of the blade, depending on the cut you are making or your personal preference.

A 2.5mm wide notch is used rather than a sharp pointer, and provided your saw has a standard width of cut (kerf) of 2.5mm, the calibration scales will be accurate on either side. You use either edge of the notch, depending on which side your fence is set, to line up with the calibration scales on the fence arms.

If your saw has a very thin slitting blade (teeth approximately 1.5mm wide) you can fit it, but first read F. Troubleshooting - 3. Thin Blades on Page 18.

ALWAYS USE THE EDGE OF THE NOTCH THAT'S CLOSEST TO THE FENCE, FRONT & REAR.

Use this edge of the notch when fitting the fence on this side.

With the fence on the right-hand side, set it at "0" on the scales using the side of the notch that's closest to the fence, as shown above. Lock the fence in that position at the front and rear panels, by depressing the black plastic levers until they tighten firmly.

Next use an accurate square to check that the vertical face of the rip fence is exactly square to the table at both ends. Jacking screws are provided to tilt the face of the fence if necessary. If making any significant adjustments, you will have to slide the fence clear of the table and loosen or tighten the pivot bolts attaching the fence arms. The arms must pivot firmly but freely, without wobbling.

After any adjustment, lock the fence at 0 as described above. You will be using the fence to line up the saw, so sight down from directly above the scale pointers to avoid any error.
STEP 3 - Temporary Saw Fitting
Turn the unit upside down and rest it on a table or bench, with the fence overhanging the edge. Or, place it on wooden packers thick enough to allow your saw blade, at maximum depth of cut, to fit through the slot in the table.

With the saw disconnected from power, lock the blade at full depth of cut and check that the blade is set at 0° on the saw’s angle adjuster.

Pull back the saw’s safety guard and lower the blade through the slot, with the front of the saw facing toward the switchbox.

The slot is sized for a 235mm (9 1/4") blade. If you have a smaller saw, slide it backwards until the back of the blade is closer to the rear of the Compact - say 10mm from the rear end of the slot. [If your blade does not fit in the slot refer to F. Troubleshooting - 1. Saw Fitting Problems.]

Choose the four keyhole slots which provide the best clamping positions for your saw.

If you have a choice of slots, select those that will space the clamps as far apart as possible lengthways along the baseplate. Try to avoid obstructions on the saw - e.g. raised sections of the baseplate, or the saw’s height adjusting lever.

Remove the saw and fit the four long Coach Bolts (I), with Washers (J) under their heads, as shown, into the selected slots.

Replace the saw, with the blade touching the fence. Firmly finger-tighten the Temporary Saw Clamps (S) onto the coach bolts using the Flange Nuts (K), as shown below.

STEP 4 - Fitting the Legs
Plug the Rear Legs (B) fully into their housings at the rear of the unit. Plug the uncapped ends of the Front Legs (C) in the front panel sockets.

Lock them by tightening the round knobs, as shown. There may be some cracking noises as the powdercoat seal breaks - this is normal.

Turn the Compact right way up and test that all four feet are sitting on the ground. Make any necessary adjustments by extending one of the legs slightly from its’ housing to prevent the unit from rocking.

STEP 5 - Final Saw Fitting
Use your square to check the blade is exactly 90° to the table. If necessary adjust the blade angle. (See also F. Troubleshooting, Point 2 Page 18.) Adjust the position of the saw so that the teeth just touch the fence, front & rear. This step is very important, so take your time.

Spin the blade backwards by hand. The teeth should very lightly skim the fence set at “0”. Use a spanner to nip up the flange nuts, temporarily locking the saw in position.

Turn the unit upside down again, taking care not to bump the saw.

Twist or snip the Clamp Knobs (M) and Clamp Bases (N) off their moulding “tree”, and trim off any remnants with side cutters, scissors or a file.

One at a time, replace the temporary saw clamps with the plastic clamp bases. Slide them along the slots until they touch the saw base plate and tighten the flange nuts with a 10mm spanner, as shown.

Washers inside slots

Clamp bases must touch saw base plate
The clamp bases accurately align your saw, so after you've fitted them, check that you cannot twist or move the saw sideways at all.

Screw the clamp knobs onto the coach bolts (they cut their own threads) until they touch the lip of the saw base plate and clamp it firmly in position, as shown.

NOTE: Any burrs on the base plate, in the clamp locations, should be filed smooth to avoid damaging the knobs.

There is no need to over-tighten the knobs. They will still clamp securely, and be vibration-proof, if you leave them about half a turn past where they first scrape on the base plate.

Insert the remaining Short Coach Bolt (L) and a washer into the keyhole slot at the rear of the saw. Fit the Back Stop (O) and slide it along until it touches the base plate. Re-check that the blade is free to spin. Lock the back stop in position with a flange nut, as shown.

The clamp knobs have cut-away edges. When all four cut-aways are facing the saw and correctly lined up, the saw can be lifted straight out of the clamps, for hand-held use.

The clamp bases will re-align the saw perfectly when re-fitted. Turn the knobs clockwise about half a turn to tighten the saw back down.

When finished work for the day, either remove your saw from the Compact, or lower the saw blade using the saw's height adjuster to allow the saw guard to swing closed as much as possible. This will prevent fatigue of the return spring in the guard.

The saw slot insert is made from machinable material which can be replaced if significantly damaged. Do not remove this insert under any other circumstances.

STEP 6 - Fitting the Overhead Guard

Turn the unit right-way up. Unlock the fence and back it away from the blade.

Fit the base of the Overhead Guard Support (G) front first into the slot located behind the saw blade. Pull back the red locking latch, and press the guard support into the table depression. Then push the red latch forward to lock it in position, as shown below.

Try to wobble the guard support to ensure it is properly locked. The red latch should pop up and be flush with the table top when locked.

STEP 7 - Checking saw alignment

Loosen the knob on the Overhead Guard (H) about one turn, and remove it for the moment. Check that the overhead guard support is square to the table. If not, refer to F. Troubleshooters Guide - Point 5, Page 19. Place 2 straight pieces of wood on the table and hold them lightly against the blade.

The overhead guard support should fit between the pieces when they're held against the blade, parallel to each other as shown.

If this is not the case repeat Steps 3 and 5 or refer to F. Troubleshooting - Thin Blades, Pg 18.

Spin the blade by hand before connecting the power to ensure the blade is not touching any part of the Compact.

Refit the overhead guard to the support and tighten the knob. Check that the teeth on your blade are pointing in the same direction as the etched symbols on the sides of the guard. If not, you have the blade on the saw backwards.
STEP 8 - Fitting Lenses
Lenses have been provided for magnifying rip fence and protractor calibrations.

The protractor lens comes fitted to the protractor, while the rip fence lenses are fitted as follows.

With the rip fence arms clear of the scale pointers push the Rip Fence Lenses (Q) onto the pointers, as shown below. They are a firm push-fit.

STEP 9 - Fitting the Trigger Strap
Before fitting the Trigger Strap (P) always ensure that the saw is not connected to the power and that the switch on the front panel is in the "OFF" position.

Wrap the trigger strap around the handgrip of the saw, with the furry side facing outwards. Pass the end of the strap through the buckle, until the security loop has passed through. (If your saw has a safety button on the side of the hand-grip, press it and then tighten the strap until the trigger clicks "ON".) Wrap the free end of the strap around the trigger, and it will grip firmly, as shown below.

With most saws, the strap can be slid on and off the saw trigger, without having to be undone each time.

Do not leave the trigger strap permanently locked on. When you have finished work for the day, release it and allow the spring in the saw trigger to relax.

STEP 10 - Connecting the Power
Before connecting the power, practice switching on and off.

Do not raise the Stop Plate.

Press the green switch with your finger to switch the power "ON". Tap the stop plate with your hand or thigh to switch "OFF", as shown.

Make sure the switch is "OFF", plug the saw into the switchbox inside the front panel, and bring power to the switchbox via an extension cord (minimum 10 Amp) which is in good condition.

Before switching on the power, make sure that nothing is touching the saw blade, or is likely to vibrate into it and that your hands are well clear of the blade.

Switch on and off a few times, with the safety guard raised say 25mm above the table, and see if your saw blade is running true. Any buckle or twist in the blade will be most evident as the blade is slowing down to stop. If the blade quivers badly on slow-down, check whether it is properly seated on the saw arbor. If it is, you may have to replace your blade for best results.

STEP 11 - Fitting the Storage Hooks
The Storage Hooks (R) enable temporary storage of table accessories when not in use.

Fit them onto the left or right hand base tube by opening them and clipping around the tube, as shown below.
B. FEATURES & FUNCTIONS

1. THE RIP FENCE
The rip fence can be fitted to the left or right hand side of the unit depending on which is most comfortable, or to suit certain cuts or jigs.

1.1 Calibration Settings
The pointer notch is 2.5mm wide, and represents the kerf (width of cut) of most tungsten carbide tipped blades. Provided your blade does remove 2.5mm of material, the scales will be highly accurate with the fence on either side of the blade.

Always sight down directly from above the notch to avoid sighting errors.

Fence set at 10mm on right-hand side of blade

With the lenses fitted, the rip fence can only be set as close as 6mm to the blade. If you want to set your fence closer than that, you can remove the lenses. However, having the blade very close to the fence is not the best way of ripping. See explanation on Page 9 - Safety Point 7 and Narrow Ripping Page 11. You should avoid excessive removal and refitting of the lenses.

If the lenses become scuffed, use polishing compound (eg. Brasso) to restore their clarity.

1.2 Locking Lever Tension
You can vary the tension of the fence locking levers if locking is too firm or too loose.

Adjust the Nyloc self-locking nut on the inside of each end panel as shown.

1.3 Outboard Support
By removing the fence from its’ tracks and replacing it upside down, it can be used to provide effective outboard support when crosscutting larger workpieces against the protractor. Secure a batten over the fence arms to create a surface level with the table. (The batten should be 14mm thick, as shown, or rebated to 14mm thick.)

2. THE PROTRACTOR
With the sandpaper face forward (away from you) guide the protractor strip into the slot at the front panel, and slide the protractor fully along the slot to check that it slides freely.

The Protractor (F) can be used in a trailing mode (protractor behind the workpiece), or a leading mode (protractor in front of the workpiece), as shown below. It allows a 250mm crosscut capacity in the trailing mode and approximately 450mm in the leading mode. If the material is narrow enough, the trailing mode is preferred.

Trailing Protractor

Leading Protractor
2.1 Locking the Protractor from Sliding
The protractor can be locked against sliding in its' slot, when using the Side Pressure Finger (see 3.1), or if attaching a jig.

Adjust the position of the protractor in the slot until the finger is about 20mm in front of the blade. Then tighten the protractor knob, locking both the protractor and the angle setting.

Slide it partly out of the table slot, loosen the round knob by about 8 turns and rotate the T-bolt through 90°, so it protrudes through the windows in the strip. Do up the knob say 6 turns, then slide the protractor back along the slot to the desired position and tighten the knob. Check that the protractor is firmly locked in the slot.

3. THE CAPTIVE PUSH-STICK & SIDE PRESSURE FINGER

3.1 Side Pressure Finger
The Side Pressure Finger is on the inside face of the protractor, and when extended presses your wood against the fence, with the fence on the right hand side of the blade.

The finger can be locked fully retracted, or fully extended, and is released by pressing the tabs, and sliding sideways, as shown.

Prepare the protractor for locking (T-bolt across the slot as per 2.1) and fully extend the side pressure finger. Place the wood in position against the fence and adjust the protractor angle until the finger presses the wood against the fence as shown. The finger should flex a little, but avoid applying excessive pressure.
As the end of the workpiece passes the captive push-stick, the swing-arm will drop behind it, allowing you to push the work through with your fingers clear of the blade.

4. THE OVERHEAD GUARD
The overhead guard has hold-down fingers to prevent kick-back of the workpiece. Always ensure the guard is lowered until the fingers flex a little, and lightly press the workpiece down on the table.

Having the guard as low as possible will also improve the dust collection by the overhead guard, if a vacuum is connected.

3.3 Storage
When not in use, the protractor and captive push-stick can be hung from the storage hooks as shown.

The fence can be stored upside down in its clamping tracks when not in use.

The bolt and knob on the overhead guard can be reversed, if necessary, to allow the rip fence to be adjusted closer to the blade when using the fence on the left-hand side of the blade.

C. SAFETY - The 10 Commandments
It is essential that you observe the following rules at all times for safe, accurate work.

1. Always keep fingers well clear of the blade.
Fit the overhead guard as low as possible, to just allow the work to pass underneath. Make sure your fingers and thumbs are well tucked in, and will not pass near the blade even if the wood kicks or your hands slip.

2. Never reach over or behind a spinning blade.
Most table saw accidents occur when operators reach over an unguarded or poorly guarded blade to remove off-cuts. Always use a stick to flick off-cuts away, or preferably, switch off and wait until the blade has stopped spinning.

3. Always use the safety guard when ripping.
The blade can lift the wood up and fling it towards you with great force if the guard is not fitted. Do not stand directly in line with the blade, and keep the guard lowered so that the two anti-kickback pressure fingers hold the work down on the table.

4. Always use the rip fence when ripping.
Never attempt a freehand cut, for example following a pencil line. The blade can fling the wood towards you with great force if you twist the work even slightly during the cut.

5. Always set the fence parallel to the blade, and lock it securely at both ends.
You must never angle the fence to the blade. Your wood will jam between the blade and the fence, and could be flung out towards you.

6. Always use the captive push-stick and side pressure finger when ripping narrow pieces.
It is very important to keep control of the piece between the blade and the fence - especially with short pieces. Use the captive push-stick rather than your fingers.

7. Always try to have the larger part of the workpiece between the blade and the fence.
Say for example you want to rip a 90mm wide piece down to 80mm, removing 10mm. You could cut the fence at 7.5mm (allowing for a 2.5mm saw cut), but you would be creating an uncontrolled narrow offcut trapped between the blade and the fence, and it could be flung out towards you.

It's much easier, safer, and more accurate to set the fence to your desired size (80mm) and keep good control of it, allowing the offcut to fall harmlessly aside.

8. Always prevent narrow off-cuts jamming in the blade slot.
Avoid creating thin off-cuts (say around 1-2mm thick) on short pieces, as they could become trapped in the table slot beside the blade and could jam against the side of the blade.

9. Always have the saw blade as low as possible.
You'll get best results if you work with a lowered saw blade. It is safer, and gives a smoother, less splintered cut. You can also improve the quality of your cuts by ripping slightly oversize (say 1mm more than you need) then re-setting the fence by 1mm and making a finishing cut.

10. Always wear eye & ear protection.
Serious accidents can occur when operators get sawdust or chips in their eyes during a cut. Use of ear muffs, a dust mask, and a dust collection system are also highly recommended, especially when using tools for prolonged periods.
D. ACCURACY TESTS

TEST 1 - CHECKING YOUR SQUARE
First check to see if your square is accurate. Many are not, especially handyman quality adjustable squares.

Use a board with an absolutely straight edge. Press the handle (base) of the square firmly against it, and use a sharp pencil or a utility knife to trace the edge of the board on the blade. Then flip the square over, press it against the straight edge again, and move the blade to the line, as shown.

Any error in your square is seen as doubled, and is more clearly visible.

TEST 2 - CROSSCUTTING WITH THE PROTRACTOR
Set up as shown below, and have the safety guard lowered to just admit the piece of wood. Check that the protractor is set at exactly “0”.

Switch on the power. Hold the wood firmly against the main face of the protractor, and push down lightly with your other hand, as you feed the wood smoothly into the blade.

Push the protractor until the workpiece is past the back of the blade, then switch off the power by bumping the STOP plate with your thigh.

If the leading edge of the wood fouled the overhead guard support, or if the back of the blade re-cut or burnished the cut end, your saw is mounted slightly crookedly. Adjust the positions of the saw clamp bases and knobs (Step 5 Page 4), and repeat Step 7 Page 5. See also F. Troubleshooting.

TEST 3 - RIPPING TEST
Take a straight piece of wood at least 70mm wide and say 35mm thick (3" x 1 1/8"). Place it flat on the table and lower the overhead guard to just above the workpiece.

Lock the rip fence exactly parallel to the blade with a fence setting that will give you an off-cut of say 5mm [eg. 70mm wide wood less 3mm for the saw-cut, less 5mm for the off-cut = 62mm].

Set up the captive push-stick and side pressure finger as described earlier. Switch on the power, and feed the wood smoothly. Keep pushing it - preferably without pausing - until it is fully past the blade. Keep fingers well away from the blade.

Hold the base of the square against the face that was on the Compact table and check the cut at various points. Move the fence 1mm closer to the blade, front and rear, and make a finishing cut for best results.

If the leading edge of the wood fouled the overhead guard support, or if the back of the blade re-cut or burnished the cut end, your saw is mounted slightly crookedly. Adjust the positions of the saw clamp bases and knobs (Step 5 Page 4), and repeat Step 7 Page 5. See also F. Troubleshooting.
E. OPERATION

1. BASIC RIPPING
The fence must be set parallel to the blade, firmly locked at both ends, and the safety guard must be correctly lowered. It's always best to have the wider section between the blade and the fence, as shown below, so you can keep good control over it with your hand(s) or with the captive push-stick. Avoid trapping narrow off-cuts between the blade and the fence, and do not stand directly in line with the blade in case an offcut shoots out towards you.

If the wood binds slightly between the overhead guard support and the fence, you can increase the rear fence setting slightly, say 0.5 to 1 mm.

2. NARROW RIPPING
If you want to rip a board into a number of identical narrow strips, or if you want to set the fence closer than 17 mm to the blade, the safety guard will prevent access for the fence and the captive push-stick. If so make up a notched pusher say 70mm wide, and use it as shown with the side pressure finger. It will enable the guard to be correctly lowered, while creating access for the push-stick.

Notched pusher for narrow pieces

3. RIPPING LONG PIECES
When ripping long pieces which will overhang the rear of the table by more than half their length, either have a friend help you, or rig up a "tail-out" support. The Triton Multi-Stand, shown, is very effective in this application.

Try to keep the workpiece moving, even slowly, during a long rip. Pauses can cause slight steps in the cut. A finishing cut, removing another 1mm, should help if you need a completely smooth edge.

4. RIPPING LARGER SHEETS
Lock the rip fence firmly with the same reading at both ends, although you can add 0.5 to 1mm to the rear fence setting for clearance.

Have the overhead guard as low as possible. Push the workpiece against the fence and feed gently into the blade, keeping one hand on either side of the work, as shown below. Switch off with your thigh when you finish the cut.

For ripping up to 450mm off very large sheets, use one or two Triton Multi-Stands with a suitable length of wood clamped in the head(s), to support the offcut, as shown.

For ripping widths greater than 450mm, use the saw hand-held. Remove the power saw from the Compact, remove the trigger strap, and check the operation of the saw guard. Clamp a guide to the workpiece, which should be securely supported off the floor on battens or packers. Never do a free hand cut, following a pencil line. It's dangerous.
5. DOUBLE RIPPING
You can double your maximum depth of cut by turning the wood over, end for end, and making a second cut. If the blade is exactly square to the table, and if both edges of the wood are dressed square, the two cuts should line up, as shown.

The overhead guard assembly cannot be fitted for the first cut, but must be fitted for the second cut. Make sure your fingers will remain well clear of the blade, even if the wood kicks or your hands slip. Use the captive push-stick and side pressure finger. Make both cuts of similar depth: cut a 90mm wide piece in 2 cuts of about 46mm each.

This cut puts a lot of load on your saw and blade. Never force a dull blade to cut. Slow down your feed rate, and replace or sharpen the blade.

6. PLANING AN EDGE
A tungsten carbide tipped blade or a planer blade can give an excellent finish on poorly dressed, weather-stained or painted material. It can also remove any slight step left after double ripping.

To set up, place the workpiece between the stationary blade and the unlocked fence so it is lightly touching them both. Fine-tune the fence position until the scale readings at both end panels are the same. Remove the workpiece and move the fence 1 or 2mm closer to the blade. Lock it off securely. Or, simply measure the workpiece - say 90mm wide - and set the fence at 88 or 89mm.

Hold the workpiece against the fence and smoothly push it past the blade, as shown. Use the captive push-stick and side pressure finger to control the workpiece, especially when planing narrow pieces. Keep the blade as low as possible and try not to pause during the cut.

For planing a bowed workpiece, attach a straight piece of scrap to the bowed piece so it slightly overhangs one edge for the full length. (Use strong double-sided tape, hot melt glue or brads.) Run the straight piece along the fence. After dressing one edge straight, remove the piece of scrap and run the just-dressed edge against the fence.

7. PLANING A FACE
If planing a face wider than your maximum depth of cut, set up as described above, and make two planing cuts, turning the workpiece over (end-for-end) after the first cut. Use the side pressure finger and captive push-stick to control the workpiece.

You won’t be able to use the safety guard for the first cut, so be especially careful, and keep fingers well clear of the blade area, even if your hands slip or the wood kicks.

Try to make both cuts of similar depth, i.e. plane a 90mm wide face with two cuts of around 46mm deep.

8. PLANING A WIDE SHEET
Workpieces more than 450mm wide cannot be passed between the blade and the fence. To remove a small amount from large workpieces, do not set the fence in close to the blade. Make up two wooden sub-fences to attach to the rip fence in front of and behind the blade, as shown.

The front sub-fence must be narrower than the rear one, by not more than one blade width. Drill suitable sized holes in the face of your fence and attach the sub-fences using screws or countersunk bolts, or use strong doublesided tape. (50mm carpet-laying tape is ideal.)
Lock the rip fence so the rear sub-fence is exactly flush with the left hand edge of the blade, as shown. It acts as a "catcher" for the workpiece once it comes past the overhead guard support.

For regular planing using such a jig, make up several front sub-fences of different widths. Or just make up one - say 1mm narrower than the rear sub-fence - and make 3 passes to remove 3mm from a wide sheet.

9. EDGE REBATING
By lowering the saw blade and adjusting the fence, you can make a wide variety of rebates.

To set the blade height, mark the desired depth of cut on a piece of wood. Lay the piece alongside the blade, leaving both hands free to adjust the saw blade height. (Fig a.) Or use the 2mm calibration marks on the face of the rip fence for setting blade height. In Fig. b, the blade is set to approximately 10mm - the first deep mark up from the table.

You can't use the overhead guard on edge rebates, so be very careful with hand positions and ensure that your fingers will be clear of the blade even if they slip, or if the wood kicks.

Most rebates create a narrow off-cut. You should avoid trapping the off-cut between the blade and the fence. If you can't avoid this, make sure you are not standing directly behind the blade because the off-cut could come spearing out towards you at high speed, especially if it's a short workpiece. See below.

When rebating wood which is rectangular in profile always make the first cut with the wood standing on edge (Fig. c) and the second cut with the wood lying flat (Fig. d).

Otherwise, if the wood is a bit narrow, the workpiece could be balancing unsafely on a narrow edge after the second cut.

10. TONGUE & GROOVING
Study the previous section on Edge Rebating, and then make two identical rebates from opposite faces of the workpiece. This will leave you with a central tongue.

Always make the first two cuts into the narrower edge of the workpiece (Fig. e) and the two final cuts with the workpiece lying down flat (Fig. f). If you do the cuts in reverse order, your workpiece will be left standing unsafely on the narrow tongue after the fourth cut.

To make a matching, central groove, move the fence outwards by one blade thickness, and make two cuts from opposite faces. Then reset the fence if necessary to machine out the waste between your two cuts.

You cannot use the overhead guard, so be very careful with your hand positions.

Test tongue & grooving settings on short off-cuts of the wood you'll be using.

11. EDGE WORK ON THIN MATERIAL
If you want to rebate or groove very thin boards, you will have to take some precautions, because the workpiece could be unstable while standing on its narrow edge.

Attach a suitable height sub-fence to the rip fence to give extra vertical support to the workpiece. (See 8. Planing a Wide Sheet for attachment methods.) If the width of the slot in the Compact table also causes a support problem, you may want to use a piece of ply or hardboard with a thin slot in it for the blade, securely taped to the table as a mask, as shown.

You cannot use the overhead guard so be very careful with your hand positions.
12. WORKING ON ENDGRAIN
Attach a straight, wide board onto the rip fence for extra vertical support. Use screws or bolts. Make sure the working face is square to the table and use packers between it and the fence to adjust if necessary.

Hold the workpiece tightly against the sandpaper face and down on the table, as shown. Keep fingers well clear of the blade. Make sure the overhead guard is fitted and correctly lowered.

It is best to rehearse these cuts with the blade dropped below the table level, in order to check your hand positions throughout the cut.

The width of material you can handle is limited and you may have to insert a packer between the workpiece and the protractor face to achieve a desired cutting line. The packer should either be attached to the workpiece, (using double sided tape, hot melt glue, or mechanical fasteners), or be attached to the protractor face. Attaching to the protractor face is best - especially when cutting multiple pieces at the same angle. Glue a strip of sandpaper to the working edge for extra grip.

On long taper cuts, the protractor slider strip may protrude beyond the rear of the table. For adequate guidance ensure at least half of the strip is always engaged in the slot.

Another method, which is also suitable for longer tapers, is to tack or tape a straight piece of scrap onto the workpiece at the desired angle, and slide the edge of the scrap against the fence, as shown.

Make a captive "pusher" as shown, to slide along the top of the board. Use it to support the workpiece, and to hold it square to the table as you push it past the blade. You may wish to clamp the workpiece to the pusher.

If making splined right-angled joints, Fig. a, or splined butt joints, Fig. b, cut all pieces from opposite faces, without changing the fence setting. This will ensure the grooves line up.

When working with narrow wood, make sure the workpiece cannot jam in the blade slot during or after the cut. You may have to use a mask taped to the table (as described in 11. Edge Work on Thin Material), or clamp the work to the pusher.

13. TAPER RIPPING
To rip tapers, the workpiece must be angled to the blade by a guide that travels parallel to the blade.

Never angle the rip fence to the blade for taper ripping. Taper cuts cannot be made in this way and are extremely dangerous if attempted.

There are three recommended methods. For tapers up to approximately 750mm long, you can use the protractor, as shown opposite.
14. CROSSCUTTING
When crosscutting, make sure the workpiece is of a manageable length, and that both the workpiece and the offcut you'll create are well supported during and after the cut. With larger pieces, use a Triton Multi-Stand, and/or reverse the fence and use a packer to support the workpiece or the off-cut. (See B. Features & Functions 1.3 Page 7)

Set the protractor at "0" and make sure the overhead guard is correctly lowered. Hold the wood firmly against the sandpaper face of the protractor and down on the table while moving it smoothly past the blade.

NEVER SET THE FENCE AS A STOP. See below. The offcut trapped between the blade and the fence is uncontrolled, and will be flung out towards you, causing possible injury and damage.

15. MULTIPLE CROSSCUTTING
If you want to use the fence to crosscut a number of short pieces to the same length, you must attach a spacer at least 19 mm thick to the front of the fence using screws, tape, hot-melt glue or a G-clamp.

Set the fence to the desired length of the pieces, plus the thickness of the spacer.

Pieces not trapped against fence.

By using the spacer as a length stop, you don't have to individually measure, mark, and line up each piece. By ending the spacer before the front of the blade, the cut-off pieces are not trapped between the blade and the fence.

16. MULTIPLE CROSSCUTTING AGAINST AN END STOP
Attach a straight sub-fence to the side of the protractor, and clamp or screw a stop block to it. Each piece pushed up against the block will be cut to exactly the same length.

You can end the sub-fence at the side of the blade, or you can extend it right across the table (provided you make it out of a wider piece that you can partly cut into without greatly weakening it.)

You can make the sub-fence up to around 1 meter long (longer if you have a Multi-Stand or reversed fence for outboard support), and attach a tape measure or a ruler to it, with "0" on the ruler being flush with the edge of the blade. Use the ruler to cut pieces accurately to length, or to set a stop block.

When attaching a sub-fence to the protractor, it's best to use screws with suitable sized heads through the keyholes in the protractor face. This will enable easy fitting and removal, by just loosening the screws and sliding the sub-fence sideways.
17. HALVING JOINTS & TENONS
Using the fence as a length stop is permitted when cutting halving joints (rebates) and tenons, because there is no offcut to be trapped between the blade and the fence.

For rebates less than 450mm from the end, butt the wood against the fence, and use the protractor as shown to slide the wood. Make the defining cuts using the fence and scales, then make a series of cuts, moving away from the fence by one blade-width after each cut. Only move the wood sideways when fully clear of the blade.

When tenoning, if you machine opposite faces, as shown below, without changing the blade height setting, the tenons will all be perfectly central on the ends of the pieces.

If using a router to make the mortices, select the cutter first (say 12 mm diameter) and make your tenons 12 mm thick. The mortices will be easier - just a single setup for your router.

18. MITRE CUTTING
With the protractor in the trailing position (for best support of the workpiece) lock it at 45°.

Make sure the protractor slides freely along the slot. Hold the wood firmly against the face during the cut - it will tend to "creep" sideways during a mitre cut.

19. MITRE CUTTING MOULDING
To test that you are set at exactly 45°, cut about 200mm off the end of a straight piece of scrap. Fit the pieces together and check with a square that they form a perfect 90° right-angle.

If making any slight protractor adjustment, re-cut both pieces, and check again. If required, fine tune the degree pointer as described in F. Troubleshooting, Point 4, Page 18.

If the wood is flat on both faces, cut the reverse mitre at the other end by turning the piece end-for-end, and lying it on it's other face for the second cut, as shown.

If you can't turn the workpiece over, (e.g. picture framing or beading) cut the mitres with the protractor set to +45° for the first cut (Fig a) and at -45°, for the second cut (Fig b).

Mouldings should always be cut with the flat base resting against the table, and the taller edge against the protractor. It gives better support, and less splintering on the moulded visible faces, because they were facing upwards where the cut is always cleanest.
When cutting flexible materials - such as thin beading or moulding - the protractor face is too far from the blade for adequate support, when the protractor is set at negative angles (as in Fig. b above). Attach a sub-fence to the protractor face, or insert a stiffer piece of parallel scrap between the protractor and the moulding, for back-up.

20. MITRE CUTTING TO A LENGTH STOP
First crosscut your pieces to length, a few millimetres longer than you'll need. With the protractor carefully set, at say +45°, mitre cut one end of each piece.

For perfect length accuracy without measuring, marking and sighting up each cut, fit a sub-fence to the protractor, and clamp a mitred stop block to it for the second cut, as shown.

Set the protractor to the reverse angle, -45°, and cut the other ends. All cuts are made with the moulded face upwards (better support and less visible splintering) and all pieces will be identical in length.

Grip the workpieces firmly because there is a tendency for them to "creep" during the cut. Or glue a sandpaper strip to the face of the sub-fence for extra grip, if not using a stop block.

21. CUTTING SHARP POINTS OR WEDGES
Sharp stakes, pegs or wedges can be safely cut using the protractor - set at say 15° - and making two or four cuts, turning the wood over after each cut.

You should use a sub-fence, because the protractor face may not give sufficient support, especially when cutting sharp points on stakes. Also your fingers might have to pass too close to the blade for safety, without a sub-fence.

Glue sandpaper to the sub-fence for extra grip, or preferably attach a rear stop block to the sub-fence and butt each workpiece up against it. Provided your workpieces are all the same length, it ensures the points will be central - without measuring, marking or sighting up - and makes it easier and safer to hold the workpieces.

If the workpieces are too long to fit a stop block, use sandpaper or clamps. Sight up cuts by using a line squared around each workpiece - say 100 mm in from the end - and referencing it to a pencil mark on the sub-fence, as shown.

45 x 19 mm (2" x 1") on edge is ideal material for a sub-fence. Rebate the end closest to the blade to allow the overhead guard to adjust to say 10 mm above the table.

Adjust the overhead guard so the workpiece just passes under it and keep the blade as low as possible.

Lower the saw blade to below table level and rehearse this cut, without power, to confirm your hand positions.

Be careful of the small wedge-shaped off-cuts. They can vibrate into the blade and become re-cut, or flung out, or can wedge in the table slot beside the blade. Keep a stick handy to move them away from the blade after each cut.

If one becomes wedged in the slot, stop cutting, switch off the power with your thigh, and wait until the blade stops completely before withdrawing the workpiece and removing the jammed off-cut.

22. BEVEL RIPPING
The optional Triton Compact Bevel Ripping Guide (Part No. BRA100) is required to perform this function. It enables accurate bevels and chamfers from 15° through 90°, and makes use of the protractor for perfect compound mitres.

You must not remove the plastic saw slot insert in the table for bevel ripping, because your saw blade would be unguarded and unsafe, and you would have an excessively large slot in your table. You would also void your warranty.
F. TROUBLESHOOTING

1. Saw fitting problems
 - If a planned clamp location tends to foul (a) an obstruction on the baseplate lip, (b) the saw motor, or (c) the adjuster controlling the blade height, relocate the clamp(s) to a different slot.
 - If your saw has a very short baseplate use the four inner slots. The 10 mm stated in Step 3 Assembly (as the gap between the blade and the end of the slot in the table insert) is to be used as a guide only. You may move the saw a little closer to the front panel for better clamp locations.
 - If your blade won’t fit through the slot (because of a riving knife fitted to the saw) extend the slot towards the front of the insert, by using a hacksaw blade or a file on edge.
 - If one of your clamps fouls the saw motor, you may have to replace it with one of the Temporary Saw Clamps (S), on a shortened coach bolt, or contact our head office in Melbourne for advice.

2. Saw blade cannot be adjusted fully square to the table
 - First check that the saw doesn’t have a limit screw in the baseplate, underneath the angle quadrant, preventing you from reaching 0°. Check that nothing else is fouling the saw motor or saw top guard, preventing full blade tilt.
 - Check that the mountings between the saw baseplate and the motor housing are reasonably firm. Tighten them, if possible, or upgrade your saw.
 - If you cannot find any other solution, remove your saw and insert a full-length strip of thin packing between the narrow part of the baseplate and the table, to slightly tilt the saw, as shown opposite. Preferably glue or tape it to the table. Re-tighten the clamp knobs.

3. Very thin saw blades (teeth about 1.5mm thick)
Thin slitting blades can be fitted, but we recommend standard blades (teeth about 2.5mm thick) for several reasons:
 - Thin blades are very flexible, and are easily bent or twisted when fitting the saw, making them difficult to align.
 - Thin blades, while measuring 1.5mm thick, actually cut 2 to 2.2mm wide. If fitting a thin-blade saw, insert a strip of cardboard between the blade and the fence, as a temporary spacer, and hold the blade against it while aligning the saw in Step 5. Page 4. (Use 0.5mm material = doubled over Manilla folder cardboard). You won’t be able to spin the blade by hand.
 - With a thin blade, the scales will only be accurate with the fence set on the right-hand side of the blade. You’ll have to make an allowance when setting the fence on the left. Make up a label for either end of the fence, showing the allowance to make in future fence settings, as shown opposite.

A thicker blade will solve the above problems, and should also give you smoother cuts, less flexing in dense wood, and much better results when planing.

4. Protractor scale is slightly inaccurate
The scale pointer can be adjusted by using a small screwdriver to lever out the lens, and then prising the pointer sideways.

First, make test cuts and adjust the protractor angle setting until you are cutting exactly square. Then insert the screwdriver blade into the appropriate slot beside the pointer, and twist until the tip of the pointer is exactly opposite 0°.
5. Wood binds on overhead guard support when ripping
- First check that the fence was set at identical readings front and rear. If it was, try increasing the rear fence setting slightly (0.5 - 1mm) and repeat the cut.
- Next check that the saw blade is correctly lined up with the overhead guard support, (Step 7, Page 5).
- Check that the overhead guard support is square to the table. To square it up, use a straight piece of material, such as a block of wood, to spread the load as you bend it square as shown.
- If the problem persists, you may have to re-align the saw slightly so that the overhead guard support fits into the kerf of the blade you’ve fitted, without jamming.

6. High spots, burn marks and re-cut damage on the workpiece.
If the back of the blade re-cuts or burnsishes the wood when you cross-cut against the protractor, or when you rip against the parallel fence, the most likely reason is that your saw is mounted slightly skew. Re-align the saw as in Steps 3 and 5 on Page 4, unless you find a solution below.

Before re-aligning the saw, check a few other possible causes:
- Remove the blade from the saw, check that the saw's arbor and washers are clean, and that the blade is well seated. If an arbor reducing washer is fitted, ensure that it is a snug fit, and not proud of the blade disc.
- Use a metal straight edge, at various points across the centre hole, to check for blade flatness. If significantly buckled, replace the blade.
- Check for arbor float in your saw bearings by disconnecting the power, gripping the blade nut and pulling in and out in the direction of the shaft, as shown opposite. Any movement is undesirable. If you want perfectly square cuts, you may have to repair or replace your saw.

SELECTING A NEW CIRCULAR SAW
Look for a float-free arbor, and firm mountings between the body of the saw and the baseplate. Check for arbor float as described above. To check the mountings, hold the saw baseplate down on a table (blade removed, or overhanging the table edge), and see how much you can move the motor up and down when the saw adjusting levers (or knobs) are firmly locked. Try it at different blade heights and angles.

Most circular saws have the height setting lever (or knob) behind the blade, and the pivot at the front. They are the preferred type. Some vertical lift saws - where the motor housing moves vertically on a pedestal - lose their precise blade alignment when height adjustments are made, and are generally not recommended.

Look for a saw that has robust, easy-to-access adjustments for blade height and angle.

SELECTING A NEW SAW BLADE
Your choice of saw blade is one of the key factors in achieving square, smooth cuts with a minimum of splintering. We strongly recommend tungsten carbide tipped (TCT) blades. A good quality blade will minimise the effects of arbor float and flex in the saw's mountings, and will stay sharp for extended periods even when cutting glue-impregnated material such as plywood and particleboard.

The number of teeth depends on the work you'll mainly be doing: for crosscutting, the more teeth the better. A 184mm (7 1/4") saw should have 30 - 40 teeth and a 235mm (9 1/4") saw should have 40 - 60 teeth. For ripping, you generally need fewer teeth, more widely spaced, for better sawdust clearance. If you can only afford one blade, we suggest more teeth rather than less, and slow down the feed rate when ripping.

Triton Premium TCT Saw Blades have been expressly designed for use in Triton equipment. They have a 2.5mm kerf, and are engineered to very high tolerances.
TRANSPORTATION
The Overhead Guard and Overhead Guard Support are vulnerable to damage if the Compact is carried with the legs removed, or when used in the Wheelbarrow mode with the optional Wheel Kit. Always remove the overhead guard and support from the table, and lower the saw blade below the table, when transporting the Compact.

You should also clear the table before turning the Compact on its side for removing or refitting the legs, in case it over-balances and damages the protruding components.

MAINTENANCE
Periodically check that the clamp bases, clamp knobs and the back stop are tightened and are accurately positioning your saw. Keep your saw, blade and the extension cord in good condition. Keep the unit indoors to prevent rusting - especially in very humid or salty coastal areas. Spray or wipe the epoxy powdercoating with RP7 or WD40 or similar products in severe climatic conditions.

Because of the epoxy finish, there is no identical touch-up paint available. If necessary, use a high quality enamel - preferably automotive - matched to the Compact colour.

At the end of each day's work, you should disable the Compact and release the trigger strap. Lower the saw blade and allow the saw's guard to close as much as possible, or remove the saw.

GET ONTO THE MAILING LIST
Make sure that you send in your Warranty Registration Certificate. This automatically gets you onto our mailing list for product updates and details of new developments. If you move, please let us know your new address so that we can continue to keep in touch with you. If you happen to hand on or sell your Compact, ask the new owner to contact us so they may also benefit from our mailing list.

OPTIONAL ACCESSORIES

Wheel Kit
(AWA100)
For greater mobility of your Compact Saw Table.

Bevel Ripping Guide
(BRA100)
Accurate bevels and bevel mitres from 15° to 90°.

Dust Bag (DCA100) & Dust Collector (DCA300)
Provide a cleaner, healthier work environment.

Made in Australia by: Triton Manufacturing & Design Co. Pty. Ltd. ACN 006 021 683 14-18 Mills St, Cheltenham, Vic. 3192 Ph: (03) 9584 6977 Fax: (03) 9584 5510 E-mail: tools@triton.net.au Web Site: http://triton.net.au

Australia: NSW - (02) 9822 4111 Qld - (07) 3252 7666 SA - (08) 8340 2833 WA - (08) 350 5588 Tas - (0363) 44 7060

International: Japan - Ph: (08263) 8 0834 United Kingdom - Free Call: 0800 856 7600 New Zealand - Ph: (09) 634 5348 South Africa - Free Call: 0800 600 432

Due to our company policy of continuous product improvement, specifications may change without prior notice.